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ABSTRACT
The rapid advancement of blockchain technology, with Bitcoin at

its core, has significantly influenced the digital economy. However,

Bitcoin’s growth has been hindered by challenges in scaling and en-

suring efficient transaction validation and finality, especially with

the increasing demand for Bitcoin inscriptions and layer-2 solutions.

A critical issue in this context is the data availability problem, which

limits the network’s capacity to validate and finalize transactions

swiftly and efficiently. To address this, we introduce Nubit DA, a pi-
oneering Bitcoin-native data availability layer designed to achieve

instant finality, thereby considerably enhancing transaction confir-

mation times. Nubit DA incorporates a novel consensus algorithm,

named as NubitBFT, which supports a vast network of validators, en-

suring the robust security and censorship resistance inherent to the

Bitcoin blockchain. Addressing the scalability challenges, Nubit DA
employs a signature scheme based on Zero-Knowledge Proofs (ZKP)

to minimize communication overhead among validators, enabling

the network to scale effectively without compromising security.

Additionally, it introduces an innovative approach to data availabil-

ity through data availability sampling and a decentralized Bitcoin

payment scheme, further enhancing the efficiency and trustlessness

of the Bitcoin ecosystem. This paper details the design and imple-

mentation of Nubit DA, highlighting its contributions to achieving

a scalable, secure, and efficient blockchain network. Through these

advancements, Nubit DA not only addresses pressing scalability

and data availability challenges but also significantly improves the

Bitcoin user experience by reducing latency and facilitating a more

efficient payment protocol.

1 INTRODUCTION
The continuous evolution of blockchain technology has been in-

strumental in shaping the digital economy, with Bitcoin standing at

the forefront as the pioneering decentralized digital currency. Since

its inception, Bitcoin has faced numerous challenges, particularly

in scaling its network to support higher transaction throughput

and faster finality while maintaining its core principles of decentral-

ization and security. Among these challenges, the data availability

problem poses a significant bottleneck, impacting the network’s

ability to efficiently validate and finalize transactions. The recent

surging demand for Bitcoin inscriptions and Bitcoin layer-2 further

amplifies this problem.

A data availability layer [2] refers to a specialized infrastructure

or protocol layer designed to ensure that data necessary for validat-

ing transactions and blocks is readily accessible to all participants

in the network. This concept is particularly relevant in the design

of scalable blockchain architectures, where managing the sheer

volume of data efficiently without compromising security or de-

centralization becomes a significant challenge. By separating data

handling from transaction processing, a data availability layer aims

to enhance scalability (by enabling more transactions per second)

without sacrificing decentralization.

The goal: We propose Nubit DA, a Bitcoin-native data availability
layer with instant finality, which refers to the ability of a blockchain

network to confirm transactions within a single block confirmation,

drastically reducing the time it takes for transactions to be consid-

ered final and irrevocable. In particular, Nubit DA’s novel consensus
algorithm supports a large volume of validators while inheriting the

tamper-resistance and censorship resistance of Bitcoin blockchain.

Challenges: However, developing a data availability layer for the

Bitcoin ecosystem is quite challenging due to the following two

reasons:

• Validator Size. The consensus mechanism ensures that all

participants in the network agree on a single source of truth,

even in the presence of malicious actors. However, as the

number of validators grows, the limitations of its consensus

algorithm in terms of scalability, communication overhead,

and speed have become increasingly apparent.

• Block Size. As the number and complexity of Bitcoin applica-

tions grow, the average block space also increases. In that

case, it will be challenging for user clients to efficiently verify

data availability.

Our solution: To address the first challenge, Nubit DA will adopt a

signature aggregation scheme based on zkSNARKs, a cryptographic

primitive that allows one party to prove to another that a statement

is true, without revealing any additional information apart from the

fact that the statement is indeed true. In particular, in the Tender-

mint [10] scheme, the complexity of each round of communication

is 𝑂 (𝑛2). Assuming there are 𝑁 validators and a block hash 𝐻 , a

proof 𝜋 can demonstrate that 𝐻 has been signed by at least 𝑘 val-

idators. This proof will only be accepted when it is verified by a

validator and 𝑘 ≥ 2/3𝑁 . This technology, named as NubitBFT, will
significantly reduce the communication volume between validators

in verifying the validity of signatures from 𝑂 (𝑛2) to 𝑂 (𝑛 log𝑛),
verifying the correctness of transactions without having to access

the entire dataset, thereby significantly reducing the computational

overhead and increasing the scalability of the network.

To address the second challenge, traditional blockchain schemes,

such as Bitcoin, require users to download all data to finally ver-

ify data availability, which is intolerable for a high-performance

blockchain: this means that any ordinary user would need TB-

level storage to trust the network. To mitigate this challenge, Nubit
DA incorporates Data Availability Sampling (DAS), a solution pro-

posed in [3]. Furthermore, to reduce the size of data communication

among validators, Nubit DA introduces a technique called Block
Dispersion. This method enables each validator to retain a faithful

yet minimal portion of the original data, eliminating the need for



downloading all data from the leader, while the entire network still

provides a complete replica of the data.

Contributions. In summary, this paper makes the following con-

tributions:

• We design and implement Nubit DA, the first Bitcoin-native
data availability layer.

• We design and implement an innovative, high-performance

consensus protocol that achieves Instant Finality without

compromising security.

• Our novel signature aggregation scheme, powered by ad-

vanced zero-knowledge proofs, can dramatically reduce Nu-
bit DA’s communication costs.

2 BACKGROUND
In this section, we provide some necessary background on blockchain,

data availability, and zero-knowledge proofs.

2.1 Blockchain
In recent years, blockchain technology, fundamentally a distributed

ledger, has emerged as a trusted paradigm for asset issuance and

transaction processing due to its resistance to censorship, tamper-

proof, and decentralization. Technically, a blockchain essentially

comprises three core components: the consensus layer, the settle-

ment layer, and the data layer. The consensus layer is responsible

for reaching an agreement on transactions such as proposed blocks,

verifying the validity of blocks, and penalizing dishonest nodes

among the network’s participants. The settlement layer maintains

the integrity of the blockchain ledger, while the data layer stores

and maintains the data on the blockchain. The tamper-proof of a

blockchain is based on the assumption that the economic cost of

tampering with the network exceeds the total value of assets issued

on it. Correspondingly, two types of consensus models are used to

establish the network’s tamper-proof: one is the Proof of Stake (PoS)

model, where network participants "purchase" the possibility of

being selected to propose a block and participate in its validation by

staking a certain value of tokens, with the tamper-proof determined

by the total value of the staked tokens. The other is the Proof of

Work (PoW) model, where participants propose blocks by solving

specific puzzles and submitting proof of their work, which can be

verified by other nodes, with the tamper-proof determined by the

overall computational power of the network, indirectly anchoring

it to real economic value. Based on these fundamental models, to

provide different characteristics, many blockchain paradigms have

been established, with Bitcoin and Ethereum being representatives

of the PoS and PoW networks, respectively.

Bitcoin. Bitcoin [9] is the first modern blockchain system. As

of 2024, due to its PoW consensus model and a network hash rate

exceeding 500M Trillion Hash/s, the Bitcoin blockchain is consid-

ered to have the best tamper-proof and censorship-resist among

blockchain networks. Bitcoin itself has data storage capabilities,

but due to its protocol’s limitation on block space (1MB), the cost of

storing data on Bitcoin is very expensive in practice. Additionally,

Bitcoin’s settlement layer lacks support for Turing-complete lan-

guages, so any derivative protocols relying on Bitcoin settlement

require more specialized designs due to this limitation. The Light-

ning Network is an example of a protocol built on top of Bitcoin,

designed to facilitate fast, small-scale BTC payments between users.

Ethereum. Ethereum [26] is the most popular network within the

PoS consensus model: it optimizes its consensus protocol to allow

for an extremely large number of validators (around 900,000 as of

2024), thus considered to have a high degree of decentralization

and resistance to censorship. However, as a trade-off, Ethereum

theoretically requires about 15 minutes to confirm the finality of a

block. The cost of data storage on Ethereum’s data layer remains

high, prompting developers to consider low-cost data availability[3].

Compared to Bitcoin, Ethereum’s settlement layer possesses a

Turing-complete virtual machine responsible for executing user-

submitted code, thereby fostering a more prosperous ecosystem.

2.2 Data Availability
In the context of blockchain, data availability refers to the assurance

by network participants that the data uploaded by users is faithfully

proposed and stored in certain nodes of the network, and that these

nodes can prove this property to other participants. To achieve

consensus on data availability, the most straightforward approach,

such as methods in early blockchain systems like Bitcoin, requires

network participants to download all block data and verify its valid-

ity, leading to significant scalability issues: if the blockchain stores

large enough data, ordinary users may not be able to afford the cost

of processing this data or may not wish to spend a lot of bandwidth

on data they are not interested in. As a result, they may be unable

or unwilling to participate in verification, leading to centralization

issues in the network. To mitigate this challenge, LazyLedger [2]

proposed a new technique that uses random sampling to verify data

availability. Technically, Data Availability Sampling (DAS) allows

network participants to ensure the full availability of block data

without requiring any participant to download it completely. This

scheme allows potentially malicious block proposers to encode the

content of the block into a commitment 𝜎 and a complete encoded

block 𝜋 . The commitment 𝜎 is added to the block header and it

allows light nodes, which are run by ordinary network participants,

to verify the availability of the complete 𝜋 by requesting a few

positions in 𝜋 randomly. If a sufficient number of light nodes suc-

cessfully probe 𝜋 , DAS ensures that the data is fully available. Note

that a single light node cannot be certain of the full availability

of the data, as it queries only a small portion of the encoded data,

therefore DAS still requires a sufficiently large group of light nodes.

2.3 Zero-knowledge proofs
A zero-knowledge proof (ZKP) enables one party, the prover P, to
demonstrate to another party, the verifier V , that they possess cer-

tain secret information without actually disclosing the information

itself. This capability is crucial in various applications, particu-

larly within the realm of blockchain technology. In the context of

data availability, ZKPs could effectively verify the correctness of

transactions without accessing the entire dataset, thus dramatically

reducing the communication overhead among validators.

To elaborate, consider a computational process 𝐶 that utilizes

public inputs 𝑥 and secret inputs 𝑦. The prover’s objective is to

assure the verifier that a specific output 𝑧 is the genuine result of



𝐶 (𝑥,𝑦), all while maintaining the confidentiality of 𝑦. The essence

of a ZKP lies in its ability to confirm the prover’s access to𝑦 without

disclosing any information about 𝑦 itself. Among the diverse array

of zero-knowledge protocols, zkSNARKs (Zero-Knowledge Succinct
Non-interactive ARguments of Knowledge) have garnered attention

for their concise proof sizes and efficient, sublinear verification

times. An attractive feature of zkSNARKs is their ability to gener-

ate a prover and verifier automatically from an arithmetic circuit
that represents the computation, facilitating a broad spectrum of

applications from privacy-preserving transactions on blockchain

networks to secure authentication systems without revealing sensi-

tive information.

2.4 Threat Model
In constructing a data availability layer for Bitcoin, it is imperative

to consider a threat model that encompasses various adversarial ca-

pabilities aimed at compromising the system’s integrity, availability,

and security. Key threats include Sybil attacks, where adversaries

could flood the network with malicious validators; data withholding

attacks, where crucial transaction data is hidden to prevent or delay

verification processes; and eclipse attacks, targeting specific nodes

to isolate and feed them false information. Other significant con-

cerns involve censorship, where powerful entities might selectively

block or delay transactions, and Denial of Service (DoS) attacks,

aimed at overwhelming the network’s infrastructure, thereby de-

grading performance and accessibility. To safeguard against these

threats, our design must incorporate robust security measures such

as Sybil resistance, data redundancy, secure networking protocols,

and mechanisms to ensure transaction inclusion, alongside active

monitoring and responsive countermeasures to swiftly mitigate

potential attacks.

3 OVERVIEW
This section briefly describes the overview of Nubit DA. As shown
in Figure 1, at a high level, Nubit DA is composed of four critical

components: namely, a set of validators, full storage nodes, and

light clients. This section provides a summary of the functionality

of each component. It delves into the life-cycle of user interaction

within Nubit DA, offering a concise overview of the system.

• Validators These nodes operate using a consensus algo-

rithm rooted in Practical Byzantine Fault Tolerance (Tender-

mint) and are tasked with proposing blocks and verifying

the integrity of blocks and transactions. The intricacies of

the consensus algorithm are detailed in Section 4.

• Full Storage Node After receiving block data from valida-

tors, these nodes are entrusted with the reliable storage of

all data. The integrity and availability of stored data are crit-

ical, especially given the risks of malicious activities such as

data withholding or tampering. To mitigate these risks, Data

Availability Sampling (DAS) requests from light clients are

employed to verify data availability, ensuring the system’s

resilience against such threats.

• Light Client Light clients obtain block headers broadcast

by validators, which include data commitments. Based on

these commitments, they may randomly initiate requests

to full storage nodes to verify data availability. The process

and significance of data availability sampling between full

storage nodes and light clients are thoroughly examined in

Section 4.3.

We further leverage a concrete use case to go over a complete

system life-cycle depicted in Figure 1. Suppose Alice wants to com-

plete a transaction (e.g., inscription, rollup data, etc.) using Nubit
DA’s DA service. As outlined in step 1, to submit a transaction,

Alice must first dispatch her data and transaction metadata such

as the address and nonce, to the validators for incorporation into

the memory pool. Step 2 illustrates the process where validators,

upon reaching a consensus, propose the block and its header. The

block header includes the commitment to the data and its associated

Reed-Solomon Coding (RS Code), whereas the block itself contains

the original data, the corresponding RS Code, and basic transac-

tion details. In the final phase, step 3, the life-cycle concludes with
data retrieval by Alice. Here, the light client downloads the block

header, while the full storage node acquires both the block and its

header. Light clients undertake the data availability sampling pro-

cess to verify data availability. Moreover, after a threshold number

of blocks has been proposed, a checkpoint of this history is recorded

on the Bitcoin blockchain via Bitcoin anchoring. This ensures the

validator set can thwart potential long-range attacks and enable

fast unbonding.

In the subsequent sections, we will delve into the components

of Nubit DA in greater detail.

4 CONSENSUS PROTOCOL
Nubit DA aims to fully inherit the security of Bitcoin, including eco-

nomic security, immutability, and censorship resistance. It achieves

this through the implementation of Bitcoin’s native staking and

anchoring methods, such as those introduced by Babylon. However,

to reach a level of resistance to censorship comparable to Bitcoin’s,

a better consensus algorithm is needed to enable a larger validator

set. Nubit DA explores an efficient Tendermint-based consensus

powered by SNARK for signature aggregation. Because it will be

inefficient for every node to download entire blocks to ensure data

availability. So Nubit DA also integrates Data Availability Sampling

(DAS) to scale the network with full storage nodes and light clients.

4.1 Tendermint-based Consensus
Overview. Byzantine Fault Tolerance (BFT) [1] is a consensus

protocol engineered to achieve agreement among distributed nodes

within a network. This ensures the maintenance of a uniform state

across the system, even when faced with nodes either malfunction-

ing or acting maliciously. Distinct from blockchains’ typically slow

confirmation processes, BFT focuses on efficiency and finality. It al-

lows a system to function correctly even if up to

⌊
𝑛−1
3

⌋
of its nodes

are compromised, thereby safeguarding the system’s integrity and

operational continuity. Among the most recognized forms of BFT

is Tendermint, which operates through a systematic series of com-

munication stages: propose, pre-vote, pre-commit, and commit. This
structured approach guarantees the accurate processing and log-

ging of transactions across all non-faulty nodes. Nevertheless, the

scalability of Tendermint-based consensus mechanisms diminishes

as the number of nodes (i.e., validators) increases. This is attrib-

uted to the necessity for unanimous voting to reach a consensus,
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Figure 1: Overview of Nubit DA

requiring every node to gather votes from all other nodes to final-

ize a consensus. Consequently, the communication overhead for

reaching a consensus decision escalates to 𝑂 (𝑛2) within the net-

work. With a scenario of over 200,000 nodes, it becomes impractical

for each node to collect votes from all others without significant

enhancements to the consensus protocol.

NubitBFT from SNARK-based Signature Aggregation. Signature
aggregation techniques merge multiple signatures into one, which

is crucial for reducing communication and verification demands

in systems with many validators. The BLS signature scheme is a

well-known method that facilitates easy aggregation of signatures.

While combining signatures is straightforward in the BLS frame-

work, identifying which validators have signed requires an ad-

ditional mechanism, such as bitfields, which Ethereum employs.

These bitfields serve as a checklist, indicating which validators

have participated in signing. In this binary system, a ’1’ at a specific

position suggests that the validator corresponding to that position

has signed. These bitfields are always paired with their proofs, en-

abling a receiver to authenticate the proof and confirm that the

bitfield represents a sequence of legitimate signatures and their

combinations.

Although aggregating signatures is simple, merging two bit-

fields into one can be complex, and the verifier needs to be aware of

the number of aggregations a signature has undergone. Recursive

SNARKs offer a solution by allowing for the verification and ag-

gregation of signatures through a straightforward approach. Each

validator combines the SNARKs from neighboring validators and

shares the updated SNARK, enabling rapid dissemination of signa-

ture shares across the network via the gossip protocol. This requires

only 𝑂 (log𝑁 ) rounds of broadcasting for the voting process to be

completed. Furthermore, using SNARK-based aggregation mini-

mizes message sizes and communication costs.

Algorithm 1 shows the core outline of Nubit DA’s signature ag-
gregation. As the process continues, validator 𝑉𝑖 combines SNARK

proofs and bitfields it receives and shares the updated versions with

its neighbors:

• To begin, validator𝑉𝑖 creates a SNARKproof𝜋𝑖 = PoK{pk𝑖 ,H :

𝑠 = Signsk𝑖 (H)}, where 𝐻 is the block header, pk𝑖 and sk𝑖 is

Algorithm 1 SNARK-Based Signature Aggregation

1: procedure Sign(𝑉𝑖 , 𝑟 )
2: Input: Validator𝑉𝑖 , Broadcast Interval 𝑟
3: Output: ⊤ until the block has been signed

4: vec← (vec𝑘 ) |vec𝑘=1 if 𝑘=𝑖 otherwise vec𝑘=0 ⊲ Initialize bitfield

5: 𝜋𝑖 ← PoK{pk𝑖 ,H : 𝑠 = Signsk𝑖 (H) } ⊲ Create a SNARK proof 𝜋𝑖

6: broadcast(𝜋𝑖 , vec𝑖 ) ⊲ Broadcast initially

7: while Σ𝑖∈𝑁 vec𝑖 ≤ 2𝑁 /3 do
8: (𝜋 𝑗 , vec𝑗 ) ← receive( ) ⊲ Receive update

9: if valid(𝜋 𝑗 ) then
10: 𝜋𝑖 ← aggregate(𝜋𝑖 , vec𝑖 , 𝜋 𝑗 , vec𝑗 ) ⊲ Update proof

11: vec𝑖 ← vec𝑖 | vec𝑗 ⊲ Update bitfield

12: if timer.elapsed( ) ≥ 𝑟 then
13: timer.reset( )
14: broadcast(𝜋𝑖 , vec𝑖 ) ⊲ Broadcast periodically

15: return ⊤

the public and private keys of validator 𝑉𝑖 , respectively, to

show that it has signed the block.

• It sends out this SNARK proof 𝜋𝑖 along with a bitfield vec𝑖
to all neighboring validators.

Meanwhile, validator 𝑉𝑖 keeps aggregating SNARK proofs and

bitfields and then broadcasts them out to all neighbors:

• When validator 𝑉𝑖 gets (𝜋 𝑗 , vec𝑗 ) from a neighboring val-

idator 𝑉𝑗 , it first checks if the proof 𝜋 𝑗 is valid. If validated,

it merges its current proof and bitfield with those received, re-

sulting in an updated proof𝜋 ′
𝑖
= Aggregate(𝜋𝑖 , vec𝑖 , 𝜋 𝑗 , vec𝑗 )

and an updated bitfield vec′
𝑖
= vec𝑖 | vec𝑗 .

• Periodically, validator 𝑉𝑖 broadcasts the most recent combi-

nation of (𝜋𝑖 , vec𝑖 ) to its neighbors.

• This process of aggregation halts when the sum of the entries

in vec𝑖 reaches or exceeds two-thirds of the total number of

validators, i.e. Sum(vec𝑖 ) ≥ 2/3𝑁 . At this point, the SNARK

proof 𝜋𝑖 can confirm that the block has been signed by at

least 𝑘 validators such that 𝑘 ≥ 2/3𝑁 .



4.2 Block Assembly
Overview. To conclude that the overall data of the block is avail-

able by sampling only part of the information of a block (i.e. chunks),

we need to use erasure code to encode the block. To ensure the

correctness of the encoding, we need KZG commitment to be gen-

erated and included in the block header. The entire block can be

large and introduce extreme communication costs. To mitigate this

issue, block dispersion is applied on each block.

Block Dispersion. The process starts with the leader distributing

the block data to ensure every network node has access to it. Having

every validator hold a complete copy of the block would be too

costly. So, the leader broadcasts the coded chunks, as described

before. These coded chunks are then shared among different groups

of validators. Each group is responsible for keeping and managing

specific chunks, which they do by subscribing to particular topics.

To ensure that there are always enough active validators in each

group to keep the communication stable and reliable, systems like

reputation scores and slashing penalties are put in place.

Erasure Code (EC) and Data Attestation. Erasure coding is a strat-
egy that introduces extra data to safeguard against the loss of origi-

nal data, crucial for storing and sending data. A common type of

erasure coding used is Reed-Solomon (RS) coding. With RS cod-

ing, each network participant needs to store only a small section

of the block, called a chunk, while ensuring the data’s integrity.

Essentially, the lead node divides the block’s data into a grid of

𝑘 × 𝑘 chunks. This grid is then enlarged through 2D-RS coding to

form a 2𝑘 × 2𝑘 grid of chunks. Following this, the leader creates

a KZG commitment for each chunk’s data and proofs. This setup

prevents unauthorized modification of the chunks in transit, as the

commitment makes it impossible to generate valid proof for any

altered chunk.

Note that the KZG commitment is included in the block header,

also known as Data Attestation. This allows for the direct verifica-

tion of chunks, leaving no possibility for incorrect encoding.

4.3 Data Availability Sampling
Overview. Since Nubit DA enables light clients as part of its

consensus protocol, it is crucial to ensure the data integrity held

by those light clients. Data Availability Sampling (DAS) is a tech-

nique that enables a participant to verify the presence of block

data without needing to download the entire block. This is done by

conducting multiple rounds of random sampling on small portions

of the block data. Each successful sampling round increases the

likelihood that the data is fully available. Once a predetermined

confidence level is reached, the block data is deemed accessible. Val-

idators, full storage nodes, and light nodes each have specific roles

in ensuring data availability through their designated protocols.

Protocols. There are two main protocols involved in DAS:

• The sampling protocol is executed between a verifier and the

data source (the validators or a full storage node). Starting

with the KZG commitment from the block header, the verifier

asks for a sufficient quantity of block chunks selected ran-

domly from the source. If all requested chunks are received

and match the KZG commitment, the verifier concludes the

check as successful.

• The decoding protocol is carried out by a decoder working

with the validator group. It also begins with the KZG com-

mitment and involves requesting block chunks from the

validators. When it gathers more than a specific percentage

of the total chunks, all verified to be correct, the decoder

reconstructs the full block through RS decoding.

Participants. Three types of parties participate in DAS:

• Validator: Validators are responsible for running the sam-
pling protocol within the validator set. A validator will sign

the block header only if the output of the sampling protocol
is successful, thereby ensuring the data’s availability within

the validator group.

• Full Storage Node: Once a block is finalized, full storage

nodes take on the entire block by employing the decoding
protocol with the validator set. These nodes then respond to

chunk requests from light clients.

• Light Client: Light clients obtain the block header from a val-

idator and engage in the sampling protocol with a full storage
node. If the protocol is successful after sufficient sampling,

the block is considered available, and the full storage node’s

reputation is enhanced.

4.4 Bitcoin Inheritance
Overview. Nubit DA aims to fully inherit the security of Bit-

coin, including economic security and immutability based on PoW.

Achieving this integration involves leveraging Bitcoin staking and

anchoring within the protocol framework. Nubit DA’s efficient con-

sensus protocol makes it possible to achieve a level of resistance to

censorship that matches that of Bitcoin.

Bitcoin Staking. The Bitcoin staking approach enables Bitcoin

owners to participate in Proof of Stake (PoS) blockchains directly,

bypassing the need for third-party services for custody, bridges,

or token wrapping. This method offers strong economic security

measures that are enforceable within PoS networks while allowing

for the quick release of staked assets to improve liquidity for those

staking their Bitcoin.

Using the Babylon Bitcoin staking, Nubit DA incorporates ex-

tractable one-time signatures (EOTS). This technology ensures ac-

countability, with the premise that duplicating signatures for differ-

ent blocks at the same level leads to the disclosure of the secret key.

In conditions where stakers act in good faith, they receive earnings

from block rewards and transaction fees.

Bitcoin anchoring. For PoS networks, the period required to un-

bond staked assets is typically extended to guard against long-range

attacks, which entail minimal costs for attackers who wish to create

alternative chain forks post-unbonding. To mitigate these attacks

while facilitating fast unbonding, Nubit DA has checkpoints in its

blockchain. These checkpoints invalidate any forks that originate

before them. This security measure, known as Bitcoin anchoring

and pioneered by Babylon, records both block hashes and the votes

of the staking set on the Bitcoin blockchain.

Through Bitcoin anchoring, Nubit DA drastically reduces the

withdrawal timeframe to less than four hours fromweeks. Addition-

ally, these checkpoints provide an extra layer of security guarantee,

such that the integrity of data stored in a full storage node can be



determined based on these checkpoints. Even in the event of a com-

plete Nubit DA collapse, nodes can still perform data restoration

using full nodes and checkpoints submitted on Bitcoin.

5 RELATEDWORK
In this section, we will introduce the related work on the main

components of the system.

Consensus Protocol. The consensus problem [19] was first pro-

posed by Shostak, Pease, and Lamport as a fundamental issue in

distributed computing. It has attracted widespread attention, and

many different variants of the consensus problem have been stud-

ied, resulting in notable research such as Paxos [18], RAFT [22],

PBFT [11], and many others [7, 14, 15]. Among these, compared to

Paxos and Raft, which can only tolerate crash faults, BFT protocols,

starting with PBFT, are capable of handling any corrupt nodes, even

if they are malicious. Based on PBFT, many subsequent protocols

have emerged. Some protocols employ optimistic execution to en-

hance network performance, such as [1, 5, 17, 25], requiring the

network to be fault-free and clients to have minimal disputes. Con-

versely, some protocols [4, 6, 8, 12, 13, 24] emphasize maintaining

satisfactory performance even when the system is under attack or

suffers severe faults—at the cost of performance. Among these, Hon-

eyBadgerBFT [20] is considered the first practical asynchronous

BFT protocol that guarantees network liveness without any timing

assumptions. Tendermint [10] is the BFT most favored in the web3

community, modernizing existing work and simplifying the BFT

algorithm via a peer-to-peer gossip protocol. Building on these stud-

ies, consensus algorithms based on Tendermint have become one of

the foundational algorithms for blockchains, as blockchains require

consensus protocols to tolerate a significant number of malicious

nodes while maintaining rapid final confirmation—strengths of the

Terdermint algorithm. Compared to the aforementioned studies,

our research proposes a solution to optimize the actual communica-

tion complexity of Tendermint in the blockchain context: although

nodes still need to communicate with all other nodes, the volume

of communication required to reach consensus can be significantly

reduced.

Data Availability. Blockchain data availability was first discussed
by [3], with subsequent work [2] further discussing how a separate

data availability layer could be deployed as part of the blockchain

network. Moreover, [27] introduced a method to recover data that

may be tampered with by malicious nodes using a Coded Merkle

Tree, which utilizes a series of sparse matrices to construct erasure

codes. [23] proposed the possibility of optimizing the volume of

block broadcast communication, where each storage node only

needs to receive 1/N of the data to ensure the overall network’s

data availability. [21] discussed the relationship between data avail-

ability and blockchain second-layer aggregated commitments. The

aforementioned works all discuss DAS (Data Availability Schemes)

on an informal level, while [16] is the first to formally define DAS

technology. Our work adopts a data commitment scheme based on

KZG Commitments, which, compared to schemes based on Merkle

Trees and their variants, generates commitments of constant size,

significantly reducing the block header size that light nodes need

to download.

6 CONCLUSION
In conclusion, this paper introducesNubit DA, a groundbreaking ad-
vancement in the Bitcoin ecosystem, addressing critical challenges

that have long hampered its scalability and efficiency. By inge-

niously leveraging a signature scheme based on Zero-Knowledge

Proofs (ZKP), Nubit DA significantly reduces the communication

overhead among validators, enabling the network to achieve instant

finality. This innovative approach not only enhances the scalability

of the Bitcoin network by supporting a larger volume of transac-

tions but also maintains the core principles of decentralization and

security that Bitcoin is known for.
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A SUCCINCT NON-INTERACTIVE
ARGUMENTS OF KNOWLEDGE (SNARK).

A SNARK scheme SNARK = (Setup, Prove,Vrf) includes the fol-
lowing protocols.

• crs ← SNARK.Setup(𝐶) takes as input 𝐶 , which is a cir-

cuit depicting a relation R𝐶 that (𝜙,𝑤) ∈ R𝐶 if and only if

𝐶 (𝜙,𝑤) = 1. It outputs a common reference string crs.
• 𝜋 ← SNARK.Prove(crs, 𝜙,𝑤) takes as input crs, a public

input (a.k.a. , instance), and a private input (a.k.a., witness)

such that 𝐶 (𝜙,𝑤) = 1. It returns a proof 𝜋 .

• 𝑏 ← SNARK.Vrf (crs, 𝜙, 𝜋) takes as input crs, a public input
𝜙 , and a proof 𝜋 . It returns a bit 𝑏 ∈ {0, 1} such that 𝑏 = 1 if

and only if the prover (i.e., the generator of 𝜋 ) knows𝑤 that

𝐶 (𝜙,𝑤) = 1.

As SNARK, the proof size and verification time should be polylog-

arithmic in the circuit size for SNARKs. Notably, for some SNARKs,

including our decided SNARK, the two are constant. To omit the

descriptions for setups, an argument (or proof) of knowledge is

written as PoK{𝑤 : 𝐶 (𝜙,𝑤) = 1}.

B KATE-ZAVERUCHA-GOLDBERG (KZG)
COMMITMENT

As one of the building blocks of SNARKs, the KZG commitment,

named after its inventors Kate, Zaverucha, and Goldberg, is a form

of cryptographic commitment scheme based on elliptic pairings and

polynomial commitments. A commitment scheme allows one to

commit to a chosen value while keeping it hidden from others, with

the ability to reveal the committed value later. KZG commitments

specifically enable efficient and secure commitments to polynomi-

als, allowing one to commit to a polynomial without disclosing it,

and later prove properties about the polynomial (such as its value

at a certain point) without revealing the entire polynomial. KZG

commitment has a few stages to perform its functionality:

• SetupA trusted setup involves the selection of a secret scalar

𝑠 and the generation of public parameters [𝑠𝑑 ]1 in group

𝐺1 and [𝑠𝑑 ]2 in group 𝐺2, corresponding to a maximum

polynomial degree 𝑑 . Here, [𝑠]1 is defined by the operation

𝑠𝐺 , where 𝐺 is a generator of 𝐺1, and [𝑠]2 is defined by

𝑠𝐻 , where 𝐻 is a generator of 𝐺2. These groups, 𝐺1 and

𝐺2, are interconnected through a elliptic pairing function

𝑒 , formalized as 𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇 , where 𝐺𝑇 denotes the

target group for the pairing. Following the completion of the

setup process, the secret 𝑠 is securely discarded to ensure

the integrity of the system.

• Commitment The prover selects a polynomial 𝑃 (𝑥) of de-
gree 𝑑 , commits to it via: 𝐶 (𝑃) = [𝑃 (𝑠)]1, using [𝑠𝑑 ]1.
• Proof Generation The prover wants to prove 𝑃 (𝑎) = 𝑏 for

some 𝑎 and 𝑏, compute a witness polynomial𝑊 (𝑥) such that

𝑃 (𝑥) − 𝑏 = (𝑥 − 𝑎)𝑊 (𝑥). The proof 𝜋 is the commitment to

𝑊 (𝑥), as 𝜋 = [𝑊 (𝑠)]1.
• Verification To verify 𝑏 as the value of 𝑃 at 𝑎, check if the

elliptic pairing equation holds:

𝑒 (𝜋, [𝑠 − 𝑎]2) = 𝑒 (𝐶 (𝑃) − [𝑏]1, 𝐻 )
After the verification stage, the verifier could accept or reject the

proof provided by the prover. The KZG commitment brings many

benefits to be applied to blockchain communication:

• Succinctness The size of commitments and proofs does

not grow with the size of the polynomial 𝑃 (𝑥), enhancing
scalability.

• Hiding The commitment𝐶 (𝑃) does not reveal any informa-

tion about 𝑃 (𝑥) other than the committed value at a specific

point, assuming the hardness of the discrete logarithm prob-

lem in 𝐺 .

• Binding Assuming it is hard to find 𝑠 , it is computationally

infeasible to find a different polynomial 𝑃 ′ (𝑥) that would
result in the same commitment for a different evaluation

point.
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