
Goldinals: A Trust-Minimized Fungible Token

Standard on Bitcoin

The Nubit Team

December 2024

Special Thanks to Concept Contributor Domo for invaluable feedback and
insightful discussions.

1 Introduction

The current landscape of Bitcoin-based assets is highly fragmented. Multiple
standards—such as BRC-20 [1], Ordinals [2], Runes, and BRC-420—coexist
without interoperability, forcing end-users and wallets to navigate a confusing
array of formats and execution models. This fragmentation stems from Bitcoin’s
inherent constraints: it lacks a global state and a Turing-complete programming
environment. As a result, protocols like BRC-20 rely on off-chain indexers [5] to
maintain the execution state while embedding application-specific metadata on-
chain, producing a patchwork of incompatible asset formats and undermining
trust, since users must rely on indexers’ integrity.

To address these issues at their core, two essential components are needed:

1. A Turing-complete programming model natively integrated with Bitcoin’s
security guarantees, eliminating the need for ad-hoc indexers and custom
metadata formats.

2. A unified asset standard built on this computation model, compatible
with existing asset protocols—such as Runes and Ordinals—and capable
of guiding the ecosystem toward a more coherent, reliable, and extensible
future.

The first component is a Turing-complete programming model integrated di-
rectly with Bitcoin’s security. BitVM [4] provides such functionality: it leverages
an off-chain, interactive proof system and Bitcoin’s native scripting constraints
to enable arbitrary computations without modifying Bitcoin’s consensus. This
essentially brings Turing-completeness to Bitcoin at a layer above its base pro-
tocol, eliminating the need for ad-hoc off-chain indexers to maintain state.

Building on top of this Turing-complete foundation, the second component,
Goldinals, introduces a unified asset protocol that leverages BitVM’s capabil-
ities to encode complex logic directly on-chain. Its design separates operations

1



into a “Prepare” and “Kickoff” phase, secured by zero-knowledge proofs and
a challenge mechanism, ensuring trust-minimized state verification. Through
this approach, Goldinals offers a single, coherent framework that can inte-
grate and standardize diverse asset formats—such as BRC-20, Runes, and Or-
dinals—under a fully programmable model. In doing so, it promises to reconcile
today’s scattered ecosystem into a seamless, Bitcoin-secured environment where
all assets can be easily managed and evolved.

2 Background

We begin by presenting the core concepts that underpin the protocol’s design
and operation.

2.1 Bitcoin UTXO Model

Bitcoin operates under the Unspent Transaction Output (UTXO) model, in
which every fraction of Bitcoin exists as a discrete output of a previous transac-
tion or mining reward. Each output includes a lock script defining the conditions
under which it can be spent, and the spender must provide an unlock script sat-
isfying these conditions. This design ensures that Bitcoin cannot be created or
destroyed arbitrarily: tracing any unit of Bitcoin always leads back to a valid
mining reward output.

However, while this model upholds Bitcoin’s security guarantees, it intro-
duces significant challenges for implementing custom tokens or complex asset
protocols. In Ethereum’s account-based system, each node maintains a global
state that records all balances. Simple operations, such as transferring ERC-20
tokens, update this global ledger by decreasing the sender’s balance and in-
creasing the recipient’s balance. The entire network can easily verify that the
sender’s account has sufficient funds and that the recipient’s balance is correctly
adjusted.

In contrast, Bitcoin nodes do not maintain a single global state of user bal-
ances. Instead, each user’s holdings must be inferred from scanning relevant
UTXOs across the blockchain. This stateless nature makes it difficult to imple-
ment token-like logic similar to ERC-20. Without a native global state, verifying
that a sender has enough tokens to transfer, or recording the resulting balance
changes after a transfer, cannot be done as straightforwardly within Bitcoin’s
base layer.

Moreover, embedding all necessary token information directly into Bitcoin’s
standard transaction scripts is non-trivial. Simply placing recipient and amount
data in these scripts would violate Bitcoin’s consensus rules, causing transac-
tions to fail. The UTXO model’s strict constraints on script execution and data
storage thus impede the straightforward adoption of Ethereum-style token pro-
tocols, necessitating additional layers or mechanisms, such as those introduced
by Goldinals, to achieve similar functionality in a secure and trust-minimized
manner.

2



2.2 Ordinals and BRC-20

The Ordinals protocol recently introduced a way to embed arbitrary data di-
rectly into Bitcoin’s witness fields, leveraging SegWit and Taproot to perma-
nently store information within UTXOs without exceeding size limits. Building
on this capability, BRC-20 aims to issue native assets on Bitcoin by treating
Bitcoin as a sequencing layer and storage medium for metadata, while relying
entirely on off-chain indexers to maintain the global state of token balances.

In practice, however, BRC-20’s reliance on off-chain indexers introduces sig-
nificant trade-offs. Since Bitcoin provides no built-in global state, BRC-20 del-
egates state management—account balances, transaction validity checks, and
other token logic—to external indexers that must track every relevant transac-
tion. This design forces users to trust either their own or a third-party indexer
to correctly compute balances and validate transactions. Running an indexer
is resource-intensive, and most users depend on centralized services that are
not guaranteed by Bitcoin’s consensus rules. Additionally, because Ordinals
records data with fine-grained UTXO management, indexers must process the
entire Bitcoin history to confirm a token’s provenance, making a single BRC-20
transfer both complex and costly, often requiring multiple Bitcoin transactions.

Beyond these operational challenges, BRC-20 lacks native programmability.
Without a global state or a built-in mechanism to enforce conditional logic,
it cannot support advanced features like stablecoin issuance, custom unlock
conditions, or automated policy enforcement. As a result, BRC-20 remains
limited to basic, static token functionality, and its long-term adaptability and
extensibility are constrained by its reliance on off-chain computation and trust
assumptions.

2.3 CAT Protocol

The Covenant Attested Token (CAT) Protocol [3] is an alternative approach to
tokenization on Bitcoin, utilizing a UTXO-based token protocol that leverages
smart contracts, specifically covenants, to manage token mints and transfers.

One of the key characteristics of the CAT Protocol is the absence of a need
for an indexer, as the token’s ruleset is guaranteed by the Bitcoin consensus,
with both token data and logic residing on-chain through UTXO encoding.
This design allows for a more decentralized and trustless approach to token
management, as users do not need to rely on external indexers to track token
balances and validate transactions.

However, it is worth noting that the CAT Protocol relies on the re-activation
of OP CAT, a Bitcoin opcode that was disabled in 2010 due to security concerns
related to its original implementation, specifically potential denial-of-service
(DoS) attacks caused by unbounded memory usage. This means that the CAT
Protocol cannot currently be implemented on the Bitcoin network.

3



3 The Goldinals Way

3.1 Overview of Goldinals

Goldinals is a Bitcoin-native asset protocol designed to operate under Bit-
coin’s constraints while providing functionality similar to familiar token stan-
dards on other blockchains. In Ethereum’s ERC20 standard, tokens can be de-
ployed, transferred, minted, and burned through a straightforward set of APIs.
BRC20, built on top of Bitcoin Ordinals, also aims to support token-like func-
tionality, but it relies heavily on off-chain indexing and other trust assumptions.
Goldinals provides an alternative approach that implements a similar set of
APIs directly on Bitcoin, with minimal trust assumptions and without sacrific-
ing Bitcoin’s security model.

The core APIs of Goldinals are:
Deploy: Initializes the protocol’s global parameters and creates a new token

instance.
Mint: Increases the token supply by creating new units of the token and

assigning them to a specified address.
Transfer: Moves tokens from one address to another, subject to validity

checks such as balance sufficiency.
Burn: Reduces the token supply by permanently removing tokens from

circulation.
These APIs are logically similar to those in ERC20 and BRC20, but their

implementation on Bitcoin is more complex due to Bitcoin’s stateless design
and Turing-incomplete scripting language. Unlike Ethereum’s seamless, atomic
calls, Goldinals must carefully manage state updates and validity checks over
multiple steps, ensuring that the final confirmed state fully inherits Bitcoin’s
security.

3.2 Design Principles

Implementing these token APIs directly on Bitcoin requires careful consideration
of both trust assumptions and compatibility with Bitcoin’s security and design
constraints. Two principles guide Goldinals:

First, the system should be trust-minimized. It must avoid relying on
any single centralized off-chain indexer. Protocols like BRC20 or Ordinals often
depend on off-chain indexers that maintain and process the entire transaction
history. If these indexers become unavailable or dishonest, no one can validate
past transactions. Thanks to BitVM, Goldinals aims to remove this point of
trust, allowing users to validate token states independently through Bitcoin’s
blockchain and cryptographic proofs.

Second, Goldinals should inherit Bitcoin’s security model. A straight-
forward approach might record all token-related transactions on a separate layer
(L2) and only settle the final state on Bitcoin. However, if that separate layer
ceases operation, there would be no definitive way to reconstruct the history or

4



validate past events. Goldinals therefore aims to confirm every token oper-
ation directly on Bitcoin, preserving a trust-minimized and secure audit trail
that depends only on Bitcoin’s finality and data availability.

These constraints make the design non-trivial. Bitcoin’s latency, slow block
times, and Turing-incomplete scripting language limit the complexity of oper-
ations that can be verified on-chain. To meet these challenges, Goldinals
carefully splits each operation (such as a transfer or mint) into multiple steps
and leverages zero-knowledge proofs to ensure correctness without relying on
powerful off-chain indexers or large, persistent state machines.

3.3 State Machine in Goldinals

Under these principles, Goldinals introduces key concepts and entities that
together form a secure, stateful, and verifiable system.

First, Goldinals introduces a new entity, the ZKOracle, which acts as
a state machine that simulates and records the entire execution history of
Goldinals. The ZKOracle maintains global state by scanning Bitcoin blocks
for protocol-defined operations. It does not simply store all historical data;
instead, it relies on zero-knowledge proofs to compress and verify large portions
of history into small, easily verifiable proofs. By doing so, it avoids the pitfalls of
naive off-chain indexers and ensures that users can validate the full transaction
history with minimal trust and cost.

Second, Goldinals introduces the Challenger. During the confirmation
of token operations, the Challenger proactively verifies the legality of submitted
operations. Under the assumption that at least one Challenger is honest (1-of-
N assumption), any illegal attempts to finalize an operation can be discovered,
challenged, and invalidated before the operation becomes finalized.

To handle the complexity inherent in confirming operations on Bitcoin,
Goldinals represents each API call as a three-stage state machine: Prepare,
Kickoff, and Challenge. In a straightforward environment like Ethereum’s
ERC20, a single atomic transaction can confirm a transfer or mint operation.
On Bitcoin, Goldinals splits the workflow:

1. Prepare: The Sender submits a Bitcoin transaction that encodes the de-
sired operation (such as transfer or mint) and its relevant parameters. This
Prepare transaction is stored on-chain, ensuring permanent data avail-
ability. At this stage, the operation is known to the network but not yet
finalized.

2. Kickoff: After a predetermined number of confirmations and upon as-
sembling necessary ZK proofs, the Sender submits a Kickoff transaction
that proves the prepared operation’s correctness.

3. Challenge: After the Sender submits the required proofs in the Kickoff
phase, the Challenger enters a defined challenge period that is an integral
part of the BitVM process. Within this timeframe, the Challenger can
scrutinize the proofs and, if it detects any irregularities or attempted fraud,

5



present evidence on-chain. By leveraging BitVM’s challenge mechanism,
the entire dispute resolution process is enforced by the Bitcoin network
itself. If no valid challenge arises by the end of this period, the operation
is finalized and the global state—balances, supply, and other protocol-
defined variables—is permanently confirmed under Bitcoin’s own security
guarantees.

By adopting this three-stage design, Goldinals navigates Bitcoin’s latency
and constrained scripting environment. Prepare ensures transparency and data
availability. Kickoff ensures that the correct cryptographic proofs and verifi-
cation conditions are met before final confirmation. Challenge introduces a
trust-minimized mechanism for detecting and mitigating any fraudulent or in-
valid operations.

Figure 1: The three-stage state machine for Goldinals: Prepare, Kickoff, and
Challenge.

3.4 Implementation Details

In this section, we elaborate on the above computation model using the transfer
and mint functions from Goldinals.

Transfer

In a transfer operation, the Sender first broadcasts a Prepare transaction to
specify the transfer of tokens from their address to a recipient’s address. The
ZKOracle reads this transaction and records it along with other operations in
the block. Before finalizing the transfer, the Sender must produce a Kickoff
transaction that includes a zero-knowledge proof (ZKP) confirming that the
Sender indeed has sufficient balance and that the transfer obeys the rules de-
fined during Deploy. The Challenger can then review this Kickoff transaction
and raise a dispute if the proof is incorrect. If no dispute is raised after the
challenge period, the transfer is marked as finalized, and the recipient’s balance
is permanently updated on Bitcoin.

6



1. Prepare: In the Prepare stage, the Sender broadcasts a Bitcoin transac-
tion containing all the essential data that defines an intended operation, includ-
ing the referenced deploy instance (deployRef), the operation code (opcode),
related parameters, and a dedicated Bitcoin address (receiver). Unlike proto-
cols that require special-purpose UTXOs, Goldinals allows this transaction to
consume any available UTXO as its input, eliminating extra preparatory steps.
Using OP RETURN fields, the transaction output embeds these details directly on-
chain. By including the receiver’s address in the output, Bitcoin Core’s native
RPC scanblocks can readily detect and index the Prepare transaction without
relying on external indexers.

Since Bitcoin itself does not maintain a global state or inherently verify the
legality of operations, Goldinals relies on the ZKOracle—a stateful, off-chain
verifier—to track and validate the entire protocol state. The ZKOracle contin-
uously scans new Bitcoin blocks to identify all Prepare transactions related to
Goldinals. Starting from an initial empty state, it updates the global state
as each new operation is encountered and validated. Through zero-knowledge
proofs, the ZKOracle can succinctly verify both the correctness and inclusion of
these operations, producing a state commitment for every block.

Concretely, when the Sender’s Prepare transaction appears in Bitcoin Block
H, the ZKOracle checks its legality and incorporates it into a Merkle tree con-
taining all Goldinals operations from that block. The Merkle root of this tree
forms the Goldinals State Commitment for Block H—an immutable, cryp-
tographically verifiable representation of the state after processing that block’s
operations. The Sender then obtains two critical pieces of information from the
ZKOracle: the State Commitment itself and an inclusion proof for their Prepare
transaction, ensuring that their operation is both recorded and provably part of
the recognized global state.

2. Kickoff: Taking a Transfer operation as an example, once the Prepare
transaction is on-chain, the Sender must initiate a Kickoff transaction after
a specified waiting period (∆0 blocks) to finalize the operation. This Kickoff
transaction must be signed by the Sender and must embed a zero-knowledge
proof (ZKP) in its witness field, along with the corresponding public inputs.
Together, these conditions ensure that the Kickoff transaction adheres to the
KickoffScript, a set of rules verifying that the required ZKP and public inputs
are included in the witness field via a correct format.

3. Challenge: During a subsequent challenge period (∆1), the Challenger
examines the Kickoff transaction’s validity. It begins by confirming that the
Kickoff transaction references the correct Goldinals State Commitment from
the ZKOracle. If the included State Commitment does not match the one
established for the Bitcoin block containing the original Prepare transaction,
the Challenger discards the Kickoff transaction as invalid. If it does match,
the Challenger retrieves the Verification Key from the corresponding Deploy
transaction and uses it to verify the ZKP and its public inputs. If the ZKP

7



Figure 2: ZKOracle compressing and verifying Goldinals State Commitments.

fails validation, the Challenger submits a challenge transaction, marking the
operation as illegal. If no challenge arises within the allotted time, the Transfer
operation is deemed valid, and its effects become permanent. After the challenge
period concludes, the Collector can claim any remaining fees associated with the
operation without affecting its final state.

Figure 3: Workflow of a Goldinals Transfer operation.

Mint

For a mint operation, the Deployer’s initialization sets rules for minting new
tokens (for example, supply caps or distribution constraints). The Sender who
wishes to mint new tokens first broadcasts a Prepare transaction specifying
the mint parameters. The ZKOracle records it, and then, as with transfer,

8



the Sender must produce a Kickoff transaction with a proof of validity. If no
Challenger steps forward to contest this proof, the new tokens are confirmed as
added to the specified recipient’s balance.

Additional rules can be introduced to manage mint-specific threats, such as
malicious users who never finalize their mint operations. For example, after a set
time, the Deployer can revert stale Prepare transactions, ensuring that malicious
or negligent participants cannot indefinitely lock token supply. Similar designs
also address the possibility of refunding users in failed mint scenarios, requiring
them to finalize or lose their claim within a specific timeframe.

Figure 4: Workflow of a Goldinals Mint operation.

Inefficiencies and Exploitation Safeguards: In scenarios where tokens are
distributed freely, a malicious participant could repeatedly submit Mint requests
without proceeding to the Kickoff stage, thus leaving a large number of unfinal-
ized Prepare transactions. This strategy effectively locks up the token supply
and hinders fair distribution, all at a relatively low cost to the attacker. To
counteract this, the protocol imposes a time limit (∆2) on Prepare transactions
associated with Mints. After this period, the Deployer may reclaim and mark
these stagnant transactions as Reverted, freeing the blocked token supply and
enabling other participants to proceed with their own Mint operations.

A similar concern arises when token distribution requires BTC payments.
While it may seem logical to allow a user to reclaim their BTC if the Mint fails
due to supply constraints, this opens the door to strategic abuse. A user could
wait indefinitely, holding their BTC in limbo until favorable market conditions
arise. To prevent such manipulation, we introduce a payout mechanism that
forces the Sender to complete the Kickoff within ∆2 blocks. If the Sender fails
to meet this deadline, the Deployer can reclaim the UTXO. This ensures that
no party can exploit timing to their advantage and that the entire Mint process
remains both efficient and fair.

Check Balance

To determine their account balance, users need only employ Bitcoin Core’s
native scanblocks RPC to locate all Prepare transactions associated with their
addresses and examine their final statuses. If the user acted as the Sender
in a Transfer operation, the confirmed outcome of that Transfer reduces their

9



balance. Conversely, if the user appeared as a Receiver in either a Transfer
or a Mint operation, any confirmed outcome from those Prepare transactions
increases their balance. This straightforward approach removes the need for
external indexers or complex off-chain services. Users need not sift through the
entire historical record; scanning only for the Prepare transactions relevant to
their addresses and checking their confirmed results is sufficient to accurately
compute their current holdings.

3.5 Threat Model

Goldinals operates under a 1-of-N trust assumption. As long as there is at
least one honest Challenger among the set of participants, no illegal operations
will remain unchallenged. The ZKOracle is trustless, relying on cryptographic
proofs rather than trust in a single operator. Decentralizing the ZKOracle fur-
ther, such as through a committee of independent ZKOracle operators, reduces
the likelihood of collusion or censorship and ensures that users can always find
at least one honest source of proofs and state commitments.

3.6 Programmability

Goldinals enhances programmability by allowing the Sender to embed addi-
tional external conditions and facts into each operation, enabling logic that
goes well beyond Bitcoin’s native scripting capabilities. These external in-
puts—whether cryptographic proofs, off-chain attestations, or metadata—are
incorporated into zero-knowledge proofs (ZKPs) submitted alongside the Pre-
pare and Kickoff transactions. This approach ensures that any desired condi-
tions, however complex, can be verified trustlessly on-chain, without relying on
centralized parties or indexers.

This flexibility opens the door to diverse use cases. For example, consider
a multi-signature wallet setup that requires multiple distinct approvals before
transferring tokens. Although Bitcoin natively supports only limited scripting
logic, Goldinals allows the Sender to supply non-Bitcoin-compatible signa-
tures as external facts. The ZK proof then confirms that all required keys
approved the transfer, while the Challenger verifies the proof’s correctness. As
a result, even advanced signature schemes or custom key-management policies
can be fully enforced within the Goldinals framework.

Beyond multi-signature scenarios, programmability can extend to condi-
tional transfers, token gating, oracles feeding price data, or membership proofs.
A Transfer operation might require verification that a certain off-chain event
has occurred, that the recipient holds a specific non-fungible credential, or that
the Sender meets certain external criteria. By incorporating these checks into
ZK proofs, Goldinals seamlessly integrates complex logic into Bitcoin’s trust-
minimized environment, ensuring that all conditions are cryptographically val-
idated and securely anchored in the blockchain’s immutable record.

10



3.7 Key Advantages Compared to Prior Work

Goldinals enables users to interact directly with protocol-defined operations
without depending on centralized indexers. By leveraging zero-knowledge proofs,
operations can include additional programmable logic or conditional checks that
go beyond simple transfers and mints. Finally, Goldinals requires fewer Bit-
coin transactions to complete a single operation compared to protocols like
BRC-20, reducing both complexity and cost while maintaining Bitcoin-level se-
curity and trust minimization.

4 Conclusion

Goldinals introduces a trust-minimized standard for fungible tokens on Bit-
coin. By removing the need for centralized indexers and enforcing on-chain
verification of token operations, Goldinals aligns with Bitcoin’s principles of
security and decentralization. This approach opens new possibilities for se-
curely issuing custom assets on Bitcoin, such as crowdsales, stablecoins, and
liquid staking.

References

[1] BRC-20 Documentation. https://layer1.gitbook.io/, 2023. Last ac-
cessed on Dec 11, 2024.

[2] Ordinal Theory Handbook. https://docs.ordinals.com/, 2023. Last ac-
cessed on Dec 11, 2024.

[3] CAT Protocol. https://catprotocol.org/, 2024. Last accessed on Dec
11, 2024.

[4] Robin Linus, Lukas Aumayr, Alexei Zamyatin, Andrea Pelosi, Zeta Avariki-
oti, and Matteo Maffei. Bitvm2: Bridging bitcoin to second layers. 2024.

[5] Hongbo Wen, Hanzhi Liu, Shuyang Tang, Tianyue Li, Shuhan Cao, Domo,
Yanju Chen, and Yu Feng. Stateless and verifiable execution layer for meta-
protocols on bitcoin. 2024.

11

https://layer1.gitbook.io/
https://docs.ordinals.com/
https://catprotocol.org/

	Introduction
	Background
	Bitcoin UTXO Model
	Ordinals and BRC-20
	CAT Protocol

	The Goldinals Way
	Overview of Goldinals
	Design Principles
	State Machine in Goldinals
	Implementation Details
	Threat Model
	Programmability
	Key Advantages Compared to Prior Work

	Conclusion

